Control of carbon dioxide convective dissolution with chemical reactions in porous media

Laurence Rongy, Université libre de Bruxelles (ULB), Unité de Chimie Physique Nonlinéaire

Co-auteurs: Vanessa Loodts, Carelle Thomas, Mamta Jotkar, Hind Saghou, Bernard Knaepen and Anne De Wit

Keywords: CO₂ sequestration, chemical reactions, buoyancy-driven instability, dissolution flux

Dissolution-driven convection in partially miscible systems has regained much interest in the context of CO₂ sequestration [1]. A buoyantly unstable density stratification can build upon dissolution of CO₂ into brine, thereby driving convection. Dissolution and convection are known to improve the safety of the sequestration process by reducing the risks of leaks of CO₂ to the atmosphere. The temporal evolution of dissolution-driven convective dynamics has been characterized in detail and it has been shown that the dissolution flux reaches a steady-state value before shutdown [2]. The question remains, however, as to how the efficiency of such process depends on the chemical properties of the storage site and how chemical reactions can affect the steady-state fluxes. Reactions can indeed accelerate or slow down the development of dissolution-driven convection in partially miscible stratifications when they impact the density profile in the host fluid phase.

The different possible dynamics taking place during the convective dissolution of CO_2 into a host fluid containing a dissolved reactant B will be first presented for a chemical reaction $CO_2 + B -> C$ (product), assuming that all species diffuse at the same rate [3,4]. We will then consider the more general case where solutes can diffuse at different rates. Using nonlinear simulations, we will show that depending on the type of density profile developing in the host fluid, one or two convection zones can be observed. We will identify the conditions needed for a larger dissolution flux and a faster storage of CO_2 into the host fluid. The numerical findings are compared with experimental results showing that reactions accelerate the development of buoyancy-driven fingering during the convective dissolution of CO_2 into aqueous reactive solutions of alkali hydroxides [5].

- [1] A. Firoozabadi and P. Cheng, Prospects for subsurface CO₂ sequestration, AIChE Journal 56, 1398 (2010).
- [2] H. Emami-Meybodi, H. Hassanzadeh, C. P. Green, and J. Ennis-King, Convective dissolution of CO₂ in saline aquifers: Progress in modeling and experiments, International Journal of Greenhouse Gas Control 40, 238 (2015).
- [3] V. Loodts, C. Thomas, L. Rongy, and A. De Wit, Control of convective dissolution by chemical reactions: General classification and application to CO₂ dissolution in reactive aqueous solutions, Physical Review Letters 113, 114501 (2014).
- [4] V. Loodts, B. Knaepen, L. Rongy, and A. De Wit, Enhanced steady-state dissolution flux in reactive convective dissolution, Physical Chemistry Chemical Physics 19, 18565 (2017).
- [5] C. Thomas, V. Loodts, L. Rongy, and A. De Wit, Convective dissolution of CO₂ in reactive alkaline solutions: Active role of spectator ions, International Journal of Greenhouse Gas Control 53, 230 (2016).